
ATAM IWS RCH GROUP * f...

""I FILE COD

* -103-1i

1%r• FEASIBILITY OF SOFTWARE BUILT-IN TEST
W)1• FOR SDI APPLICATIONS

Co DTIC
'-a -LECTE

August 1987 W

ISI•Final Report

Covering Period of Performance: 2i9/87 - 7131187.

Contract No. N00014-87-Q.0134

Prepared For: -

Strategic Defense Initiative Organization

Office of Innovative Science and Technology
Washington. D.C. 20301-7100

Offe of Navel Research

Department of the Navy
Arlington, VA 22217-5000

Distriton: Un*ited

Prepared by:

Richard D. Healy

Mlarnl Research Group, Inc.
Peabody, MA 01960

Y146
a 87 10 6 146

AT•T gjý1i 9IKW% l

UNCLASIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRI|UTIONIAVAILABIUTY OF REPORT

2b. OECLASSIFICATION I DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-103-1
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Atlantis Research Group Office of Naval Research

6C. ADDRESS (Gty, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

One Intercontinental Way 800 N. Quincy Street
Peabody, MA 01960-3832 Arlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING [b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERStF•ifNDef ense of appkable)

iN f eSDIO/IST Cont. No. N00014-87-C-0134
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

The Pentagon PROGRAM PROJECT TASK WORK UNIT

Washington, DC 20301-7100 ELEMENT NO. NO. NO. ACCESSION NO.63221C 3BIR,FY86 SDIO

1I. TITLE (Include Security Classification) - 6 i iO

Feasibility of Software Built-In Test for SDI Applications

12. PERSONAL AUTHOR(S)
Richard D. Healy

13a. TYPE OF REPORT 713b. TIME COVERED 114. DATE OF REPORT (Year, MonthDdyj IS. PAGE COUNT
Final Report TFROM 870209TO870731 870815 I 49

16. SUPPLEMENTARY NOTATION

17. / COSATI CODES It. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)

YIELD GROUP SUB-GROUP
1012 05 Software, Built-In Test, Real Time

(.ABSTRACT (Cont••re on reverse if necessary and identify by block number)

Software Built-In Test (BIT) is a design technique for collecting information
from operational software that will assist in identifying differences between
the real Operating Environment and either the Design or Test Environments.
The BIT senses and indicates where the software is operating in "new" or
"overloaded" environmental conditions and may, therefore, be more likely to
fail. (This anomalous situation may be the result of either hardware failure
or software design error.) The technical challenge is to incorporate the
large number of relatively simple BIT tests into the fault-tolerant and
continuously operatinj environment likely to characterize a solution to the
battle management portion of the SDI mission. The management challenge is to
provide these technical assists in such a way that they can be implemented in
operational software with a minimal increase in software development time; it
is then reasonable to expect that BIT will not shift from a hard recuirement

20. OISTRIBUTIONIAVAILAILITY OF A8STRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNCLASSFIEDAJNUMITED 0 SAME AS RPT. C3OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Neil Gerr 1I(202)696-4321 l1SP

DO FORM 1473.64 MAR 53 APR edition may be used until exhausted. SECUMITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. Unclassified

i

Unclassified
W=Wl CLAIMMSIC OP THIS PASS

19. continued -

, to a nice-to-have feature as schedule pressures potentially impact devel-
opment. Our approach overcomes the management problem by providing a
standard set of tools for use within the software development environment
which will implement BIT with a minimum amount of nroqrammer action.

We have assembled standard BIT tests and tools into four general cateories
for installation within either a compiler or preprocessor so that ve
little programmer effort is required. These four categories, distilled
from numerous application- and computer-soecific candidates, are: event
counters, rate samplers, ranae checkers, and data samplers. They are
implemented as preprocessor instructions so that the programmer need only
identify the variable(s) to be monitored, type of BIT,.and the limits and
priorities at the instrumentation location. The tool then oroduces the
necessary source-code (which implements the BIT, interacts with the BIT
database. prepares and dispatches messaaes, and resumes program execu-
tion).

Automating implementation relieves a particularly effective argument
against the BIT process: that it takes too lonq to implement special tests.
Moreover, we have developed a procedure for "training" the algorithm during
testina and/or non-crisis modes of operation in order to permit evolution
without re-coding and/or re-compiling the software. We believe that this
will be most useful in the battle manaaement arena, since it can be very
difficult to anticipate the detailed evolution of command and control
systems during the desion phase of the initial phases of the software.

Successful completion of this research will provide a family of tools for
assisting the battle manaaer in anticipating situations where system over-
load caused bv design inconsistency is about to impact performance. This
approach should provide a method of precluding or alleviating siqnificant
operational impact from a software fault that miaht otherwise cause
anomalous system performance.

Aolon For
NTIS CRAWI
DTIC TAB 0
Unannounced [3 r
Justeficatcen

B y

DA. t ;' Vc I

Unclassified

ii SECURITY CLASUPICATION OP TNIS PAS1S

MtANIM RESEARH GROUP

Executive Overview

This report presents the results of a six-month Investigation of the application

of the concept of Software Built-in Test (BIT) to systems that might be useful •

in achieving the objectives of the Strategic Defense Initiative Organization

(SDIO). It was sponsored under the DoD Small Business Innovative Research
(SBIR) Program and was administered by the Office of Naval Research (ONR)

under Contract No. N00014-87-"-0134. The results reported herein are for

Phase , feasibility evaluation, of the SBIR effort.

Atlantis believes that the results demonstrate that significant additional
resources should be applied to further refining the Software BIT concept. In
particular, three features of the methodology (as refined to date) may be
significant In the development of practical systems for SDIO:

e An automated tool can be used to generate the code needed to

support Software BIT within the fault-tolerant, continuously operating
environment likely to characterize the SDI battle management arena

* Software BIT can be ied in a manner to permit gleaming"

during non-crisis operation as an aid to setting correct thresholds

o Separation of the detection and reporting features of the concepL

Addlilonally. we have Identiled particular biplementation-specific features of
Software BIT that wI be ortant as the concept evolves and Is alllented.
Whre Possile, Ade 1 owpucts have been considered.

V,," It Is bportn to identi direct applicability for the concept, It is
cquely kmpottant to Identify area where the concept may not be worthwhl.

SAd is a registered trademark of the U.S. Government for the Ada
Programming Language defined in ANSVMIL-STD-1815, commonly referred to as

-ng Reference Manual, LRM. At the time of preparation of this
documnt, revIsion A dated 22 Jan 83 was effective.

U

ATLANTIS RESEARCH GROUP

In particular, we do not anticipate that Software BIT will useful when applied
to:

"* Software systems for which the execution control is exolicitly
S•YDob•i[z•,dI by an application-specific executive which accepts

responsibility for sequencing and controlling inter-process interactions
(as opposed to a modular decomposition into conceptually
"independent" processes a la the Ada Task concept)

" Specific failure mechanisms for which a direct, explicit test Is

available. (As a general rule that it Is much more effective to test
and respond directly to each anticipated failure mechanism than to
use a generic test which might be more difficult to Interpret.)

Finally, it Is worth addressing the resource issue in this summary. As In most
things, the effectiveness of Software BIT will be proportional to the resources

allocated to the task. Within the context of real-time systems of the sort
required by SDIO, there Is a natural tendency to assess a severe penalty during
the design phase for anything that consumes either processing or storage
resources without directly contributing to functionality. Nevertheless, Industry

experience with highly reliable systems (especially within the context of
communications switching systems) has been that It Is often desireable to devote
as many resources to the diagnostic and maintenance tasks as are devoted to
providing functionality; but these resources are not wasted. They provide the
specific functional capability for highly reliable system o2eratlon.

Within the DoD community, there Is a widespread recognition that it Is
necessary to preserve expansion margin within a system design to permit
downstream evolution; but, there Is also a reluctance to devote resources to
measurement and Instrumentation. We believe that this practice should be

modified to permit use of spare processing and memory capacity for on-line
Instrumentation during early deployment, especially if it is coupled with
algorithm learning. Thus, while system evolution might require a reduction in

Instrumentation as the system matures, initial operational versions would be as
widely Instrumented as possible to permit data collection about the true

Iv

A11LAN1IS REEARCH GROUP______________________

operational environment. (For example, use of spare memory to capture
operator Input buffers for a command and control system provides very useful
post-mortem information at minimal cost provlded the memory is available. As
system evolution requires some of the memory, buffer size can be reduced.)

v[

ATLANTIS RESEARCH GROUP_ _ _ _ _ ___ _ _ _

Preface

This effort is a result of a proposal made to SDIO under the DoD Fiscal Year
1986 SBIR solicitation. Work began In February 1987 on a contract administered
through ONR. The startup delay Inevitably caused changes in emphasis: both as
a result of additional Atlantis experience and as a result of changes in emphasis
within the SDIO program. Nevertheless, the research reported herein is
consistent with the concept Initially defined in our proposal.

Several people Influenced the direction and presentation of the research. Our
contract monitor, Dr. Nell Gerr of ONR, was Invariably helpful and innovative
in attempting to keep us oriented in the right direction. Mr. Leonard Caveny
of SDIO was most helpful on the several occasions we needed to interface with
his organization. Finally, a special note of acknowledgement is due to Mr.
Doyce Satterfield of the Army's Strategic Defense Command, whose courtesy and
Interest have had a significant Influence on our understanding of how these
results might relate to an Important part of the SDIO program. We sincerely
regret that we were unable to establish contact with his organization earlier in
the period of performance.

vi

ATLANTIS RESEARCH GROUP

Table of Contents

Executive Overview iii

Preface . vi

Table of Contents vii

1. Introduction 1
1.1 RESEARCH OBJECTIVES AND CONTRACT ACTIVITY 1
1.2 REPORT ORGANIZATION 2

2. Software Built-In Test (BIT) 4
2.1 BACKGROUND AND RATIONALE 4

2.1.1 Background 4
2.1.2 Predicting Software Failures 5

2.2 THE BIT CONCEPT 7
2.2.1 Software BIT 7
2.2.3 Appjlcation-sDeciflc Tests 9
2.2.4 Commercial Examples 11

2.3 SELECTED CHARACTERISTICS OF REAL-TIME SOFTWARE 12
2.3.1 Phases of Real-trme Software 12
2.3.2 Categorles of Real-Time Software 13

2.4 GENEPIC CATEGORIES 16
2.4.1 Event Counters 17
2.4.2 Rate Sample rs....... 17
2.4.3 Range Checkers 18
2.4.4 Data Samolers. 19

3. Implementation Considerations 20
3.1 PARTITIONING THE RESPONSE TO A TRIGGER 20
3.2 TRAINING THE SYSTEM 22
3.3 SDI IMPLEMENTATION CONSIDERATIONS 23

3.3.1 Fault Tolerance 23
3.3.2 Continuous Operations 24

vii

ATLANTIS RESEARCH GROUP

3.4 IMPLEMENTATION 25
3.4.1 Instrumenting the Software. 26
3.4.2 Interacting with the Operating System 26
3.4.3 The Generic Tool 28
3.4.4 Making Software BIT Happen. 30

3.5 LANGUAGE CONSIDERATIONS. 31

4. Conclusions and Recommendations. 33
4.1 PHASE I CONCLUSIONS. 33
4.2 RECOMMENDATIONS. 34

Appendix. Using the Exception Handling Features of Ada for Software BIT .. 36

References. 39

Initial Distribution 40

Vill

ATLANTIS RESEARCH GROUP__

1. Introd' ctlon

This report presents the results of an Investigation of the application of the
concept of Software Built-in Test (BIT) for use in support of the objectives of
the Strategic Defense Initiative Organization (SDIO). The investigation was
sponsored by the Department of Defense (DoD) Small Business Innovative
Research (SBIR) Program and was administered by the Office of Naval Research
(ONR) under Contract No. N00014-87-C-0134. The results reported herein are
for Phase I. feasibility evaluation, of the SBIR effort. The work was
accomplished during the six-month period February-July 1987.

1.1 RESEARCH OBJECTIVES AND CONTRACT ACTIVITY

The technical objectives from the Phase I proposal are to:

"* Determine whether it Is possible to define a software analog to
the hardware concept of Built-in Test (BIT)

"* Identify potential applications within the SDI schedule
constraints

"* Design an experiment to demonstrate the utility of Software BIT
for detecting off-nominal performance in the SDI context.

The proposed technical approach Identified three tasks to be accomplished:

"* Perform a literature review and formulate the problem specifics

"* Develop candidates for Software BIT

"* Develop a Preliminary Design for a Phase II Experiment.

During the literature review, it became clear that the concept had both merit
and commercial precedent within the telecommunications industry. (See Section

1I1

ATLANTIS RESEARCH GROUP

2.2.4.) Additionally, we were able to define four generic categories of Software
BIT that appear to Include all of the numerous examples of both computer-
specific and application-specific Software BIT. Moreover, the BIT can be
implemented using a software tool which places minimal demands on the
software designers and implementors.

We achieved only limited success in Identifying appropriate SDI applications as
candidates for the proof-of-concept experiment. Initial efforts to coordinate

our efforts with other SDI applications, with which Atlantis personnel were
familiar, did not identify suitable applications because the research objectives of
those efforts had been changed to concentrate on different priorities during the
time between submission of our proposal and initiation of contract activity.
Late in the contract period of performance, we were able to identify the
Advanced Research Center (ARC) of the Army's Strategic Defense Command as
a likely target for a proof-of-concept experiment, but our data collection visit

of 23 July was too late to attempt an experiment design then.

As a result, we concentrated instead on developing the concept of a BIT
generation tool and were not totally successful in achieving all of the research
objectives.

1.2 REPORT ORGANIZATION

The report Is organized into four chapters and an appendix. Chapter 1 is an
Introduction and describes both the research objectives and report organization.

Chapter 2 contains a description of the concept of Software BIT, specific
examples of computer-specific and application-specific BIT, and the four generic
categories of BIT we have identified. Section 2.3 also contains a description of
selected characteristics of real-time software that are important in determining
the applicability of Software BIT to a particular application.

Chapter 3 describes many of our Phase I research results as they affect the
implementation of Software BIT. In particular, Section 3.1 describes three
different strategies for responding to a BIT alarm. Section 3.2 provides an

2

ATLANTIS RESEARCH GROUP

illustration of the concept of "training the system' to adjust thresholds and

alarms based on system experience gained during testing and non-crisis

operation. Section 3.3 identifies two aspects of the SDI application that will

Influence any practical implementation of Software BIT. Section 3.4 presents

implementation considerations and includes a description of a generic software

tool for implementing Software BIT. Section 3.5 summarizes a brief

investigation of the role that the choice of software development language

might play in the application of Software BIT to practical systems.

Chapter 4 presents conclusions and recommendations for further effort. The

appendix contains an evaluation of the role that the Ada exception construct

can play as an Implementation of Software BIT.

3

ATLANTIS RESEARCH GROUP _

2. Software Built-in Test (BIT)

2.1 BACKGROUND AND RATIONALE

2.1.1 Background

Software is an important component of all of the current architectures for

accomplishing the SDI mission. As a result, correct software processing is

essential to SDI mission effectiveness. Software correctness will be established

through:

* Design process

* Test process

e Laboratory and feasibility demonstrations

* Pre-crisis operational experience.

The credibility of software correctness will depend on the effectiveness of the

management process and its documentation.

Software failures are substantially different than their hardware analogues;
software doesn't break or wear out. Instead, software fails to operate correctly

when:

* Design process is flawed -- poor or incorrect specifications,

inadequate design partitioning, and the like.

0 Operation is attempted in a "new" and/or "untested'

environment.

Managing the design process can significantly reduce errors introduced through

the design, but such activity is beyond the scope of this effort.

4

ATLANTIS RESEARCH GROUP_

This effort focuses on developing the concept of Software BIT for SDI software.
The concept Involves measuring software performance and comparing it to (1)
performance limits derived from design values for expected performance or (2)
performance limits adjusted during test and pre-crisis operation.

Atlantis believes that the concept of Built-in Test (BIT) can be expanded to
Include software components of BIT. The primary purpose of the software BIT
would be to monitor the operational software to determine when the software is
executing outside expected windows of performance. In the event that the BIT
triggers, one of three things has happened:

(1) the external environment has changed in an unexpected way

(2) the software has failed (or a failure is Imminent)

(3) the hardware has begun to fail.

Therefore, there is a significant probability that a software error has occurred
or is about to occur. The concept would be particularly attractive during test
and pre-crisis operation because it would allow timely analysis and software
correction. However, there appears to be significant potential payoff during the
crisis operation mode If the software BIT could be incorporated as a factor into
the battle management scheme.

2.1.2 Predicting Software Failures

We believe that a primary cause of software failure In properly designed and
tested software is an attempt to operate the software in an environment other
than the "Design Environment". Figure 1 shows the Ideal relationships among
the "Design Environment", the "Operational Environment" and the "Test
Environment". In this case, the Operational Environment would be a subset of
the Design Environment. In this way, the system is guaranteed to operate only
in an environment for which It was designed. Additionally, the Test
Environment would be totally contained within the Design Environment and
would attempt to cover as much of the Operational Environment as resources

5

ATLANTIS RESEARCH GROUP

permit. Note that it Is conceivable that the Test Environment would grow with
time, as more tests are performed. (It is highly probable that the SDI Test
Environment will grow continuously for a long period as additional laboratories
are built and new operational strategies evolve.)

S) Test

Environment

Environment

Figure 1. Ideal Environment

Figure 2 shows the more normal relationships among these environments. There
is usually significant overlap between the Design and Test Environments, some
overlap between the Design and Operational Environments, and some overlap
between the Test and Operational Environments. As long as the system is
operating within the Design Environment, there should be little risk of failure.
Within the region for which it was tested, the risk Is also low. The risk is
highest in that region where it is asked to operate outside the Design
Environment and where it has not been tested.

The potential value of Software BIT lies In providing a practical way to
determine that the software Is operating outside the Design Environment. It
also seems highly desirable to Indicate that it is outside the Test Environment,
as that will reduce the sensitivity to design errors.

6

ATLANTIS RESEARCH GROUP

WU~m-rlpt

Figure 2. Normal Environment

2.2 THE BIT CONCEPT

Hardware designers have been Incorporating BIT Into sophisicated equipment
for some time. By measuring certain quantities at selected test points within
the hardware and comparing the test point values with pre-selected thresholds,

failures or off-nominal performance can be detected. Once the falure" Is
detected, an operator Is notified, or the equipment takes "appropriate" action to

protect Itself and even, at times, the operator. Proposals for "smart* BIT

usually Include an attempt to correlate these measurements with measurements
of the external environment (e.g., temperature) to Improve BIT effectiveness and
reduce false alarms.

2.2.1 Software BIT

The purpose of software BIT is to use the operating software to determine

whether the current operational characteristics of the software are consistent
with expectations and measurements for the original design environment, prior

operational or test experience, and/or specific uesign criteria established during

the BIT design process. There are basically two kinds of parameters that can

be sensed:
* Computer-specific

7

ATLANM SEARCH GROUP

e Applicatlon-epeclflc.

Camputsr-speclIc features are sensed by the operating system, while
a parameters must be built into the applications software.
(NWote th not all operating system parameters of Interest will be available from
al operating system.)

2-2-2 Role of the 'j~ fiW=t~g.vse

Modem software practice uses the concept of an oratlnasytm to Isolate the
- program from the external environment. Although many currently

fielded DoD systems do not have a formal operating system, It will be useful to
diseigush te feature of the software which perform operating system
kucton from the application functions for purposes of thi discussion.

The operating system separates the application software from the external
system envionment and handles certain scheduling, resource allocation (I.e.,
I/o), and Intrrupt handing functions. It uses queues, Inked lists, device
drivers, and a number of other software tools to perform Its function. It may
also use some special hardware features of the computer to guarantee success;
e.g., real-time clocks and resettable counters.

Although the operating system uses these tools to perform Its function, most
operatng system don't provide convenrent user access to these parameters.
Signilcant eflort may be needed to sense certain performance features such as
Intenupt response time, page faulting through the memory management system,
and other "applcation program transparent" features. (This is particularly true
for more modem processor/ system designs. For example, much current
generation microprocessor software uses "software Interrupts" to provoke
context switching maklng this function virtually Identical to VO processing and
very difficult to effectively predict.) Nevertheless, Atlantis believes that there
Is high potential payoff for developing relatively simple Software BIT parameters
within the operating system.

8

ATLAM ISEASWCH GROUP

Because the operating system Is the link (at least conceptually) between the
ap.i9ca1ons software and the environment, it Is the level at which the
* environment must be monitored. More Importantly, it Is the place at which
significant differences between the real world and the design environment can
be measured.

2.2.3 I Tests

A number of applicatIon-specific parameters are Important in assessing whether
the system Is being operated within the envelope of the Design Environment.
Unfortunately, these parameters are peculiar to specific applications; we are not
In a position to provide examples particularly relevant to SDI. Nevertheless,
some fuctionally relevant examples are appropriate.

E-3 NAVIGATION EXAMPLE

One of the tools frequently used In modem mathematics as a basis for
combining successive measurements to obtaln -optlmal estlimates Is the Kalman
Filter. The Kalman algorithm is based on an a priori statistical description of
the environment. Whenever the environment conforms to this description, the
filter performs "optimally Various techniques have been developed to de-
sensitize the Kalman Filter and let it "adaptm, but the algorithm is
fundamentally limited by the necessity to operate within the Design
Environment. If the Operational Environment differs from the Design
Environment, some performance degradation may occur. The divergence between
the Operational and Design Environments has been the cause of numerous
Kalman Filter re-designs and "software re-works'. Nevertheless, It is possible
to check on the "reasonableness" of Individual measurements and compute a
"Hgoodness of fit" parameter (the literature Is full of numerous examples of using
such parameters to drive adaptation algorithms) which could be used to detect
the divergence. Such a parameter would be a candidate for an application-
specific software BIT.

9

ATLANTIS RESEARCH GROUP

As a concrete example, the E-3 (Air Force AWACS Aircraft) Navigational
Computer System (NCS) uses an Integrating Kalman Filter to combine data from
the Omega radlonavigation system, the navigator, and a doppler radar to aid the
on-board dual inertial navigation sets. When the system was designed In the
early 1970s and flight tested In 1975-1976, it was believed that the Omega
radlonavigation system would achieve the worldwide 1-2 nm,rms position-fix
accuracy experienced in the test region and advertised by the system developer.
In the early 1980s, it became apparent that the overall system accuracy was
more like 4-8 nm (95%). As a result, the E-3 has experienced difficulty
achieving specified navigation accuracy In certain geographic regions. It Is
expected that a new version of the Kalman Filter, tuned to the less accurate
Omega radionavigation system, will be fielded In 1986. In this Instance, it Is
clear that the difference between the Design and Operational Environments led
to substantial degradation In system performance. (Note that the E-3 remains
mission capable because the design permits navigator Intervention, but the crew
workload is significantly higher than anticipatedI)

In validating the software for the next release of the E-3 NOS software, a data
collection package was built to monitor the Kalman Filter measurement
residuals, and data from the old and new software were compared In varlous
geographic regions. As a result of the data collection effort, it was decided to
Implement the new version; but the important point is that the data collection
package was monitoring an application-specific software Indicator of system
performance to determine whether it was outside the design environment. (I.e.,
the package was using Software BIT.)

A-7 WEAPON RELEASE EXAMPLE

Weapons delivery software Is frequently sensitive to the geometry between
target and launch platform, with some geometric aspects highly preferable to
others. As a result, system performance will depend on whether the system
was/was not in proper aspect at the weapon release point. These geometric
parameters, which drive the system error budget, are good candidates for
application-specific software BIT.

10

ATLATRESEARCH GROUP

In oo-unctlon with the Installation of a new hardware weapon system, the
software on the A-7 (Navy Attack Nrcraft) was signifianty altered In the mid
10es to Integrate the now system. During OPEVAL, it was discovered that the
boimb-nvlgatlon system was no longer capable of scoring accurate hits with
gravity bombs when employed by operational pilots. This discrepancy provoked
consderl consternation untl It was determined that the real problem was
that the pilots were now flying signifcantly diffrent mission profiles In order
to accommodate Improvements In threat anti-aircraft capabilities. This change
in operational employment took the weapon system outside the Design
MEnvIN for the gravity bomb algorithms. As a result, considerable effort
was applied to the task of algorithm redesign.

In ts case, simply monxtong the height-above-target at which the weapons
wer relees would have prowvied a useful g for ancpaing weapons
delvery accuracy. Since Ohs data value Is an Input to the ballistic
calculaons, it Is readily avalable. Hence, height-above-target Is a useful
candidem for Software BIT In this applcation. It could have been used to alert
th operator that the system was operating outside the design envelope for
a-uro weapon delvery.

As peat of our Phase I efo*ot Atlantis perlormed a literature search to
deteminea I the Software BIT concept has been Implemented In other areas.
We con-cemn on both the electric power and telephone communications
Indulsties as potential candidates in addition to the DoD literature available
thwough the Defense Technical Irdormation Center (DTIC). It appears that
thew Is ample evidence to Infer that a system similar to the Software BIT
connopt Is currently used within at least one telephone switching system to
d4termine when potential problems exist, trigger additional maintenance
diagnosc testing, and Influence resource allocations. (See References 1-3.)

11

ATLANTIS RESEARCH GROUP

2.3 SELECTED CHARACTERISTICS OF REAL-TIME SOFTWARE

There are numerous ways to characterize real-time software. For our purposes,
two features are appropriate: the method by which Individual software
components are scheduled, and the execution phases during operation. For
simplicity, we refer to Individual software components capable of distinguishable
operation as -tasks (clearly Intending the Ada context definition but accepting
other Interpretations) and divide execution Into three phases. These
characteristics are described below only to form a context for discussion of
Software BIT and for clarification.

2.3.1 Phases of Real-time Software

Each task Involves three phases: Initialization, execution and termination.
During initialization, the task must create its own Internal logical environment,
Initialize variables and buffers, etc. The execution phase represents the major
focus of the system design. (Our classification scheme is based on the method
by which the task Is controlled during the execution phase.) Finally, it is
necessary for the task to terminate properly. Fig. 3 represents these phases
schematically.

Phase changes are scheduled by the task but triggered by external processes-
usually the operating system. Tasks may execute once, Indefinitely, or a fixed
number of times.

phose-.rpt

Initialize Execute Terminate

Ta]sk Task Task

Figure 3. Phases of Real-time Tasks

12

ATLANTIS RESEARCH GROUP

2.3.2 Categoodes of Real-Time Software

From the perspective of task control, three different strategies can be applied

during the execution phase: synchronous, explicit, and asynchronous control.
Each has benefits as well as drawbacks. Software categories are defined in
terms of the method In which tasks are controlled during execution phase.

Please note that we deliberately exclude any operating system software from

these discussions.

SYNCHRONOUS CONTROL

Figure 4 depicts the activation schedule for a group of synchronously controlled
tasks. In this approach, time Is divided Into uniform intervals (frequently called
frames) and all tasks are activated in each interval. The amount of execution

time allocated to each task may depend on the task itself and Is usually not
controlled explicitly (i.e., each task executes to completion under its own
control). Time slices are not necessarily equal, but the task Invocation
sequence Is fixed (I.e., task 1 always executes before tasks 2, 3, ...).

Task Activation Schedule

Interval 1 2 .3 ... N

Task 1 p2
Task 2

Task 3

Task 4

Task5 -- -5

Task 6

synch I rpt

Figure 4. Task Activation Schedule for Synchronous Control

13

ATLANTIS RESEARCH GROUP

This form of control Involves very low task overhead. Since the execution

sequence Is fixed, synchronization Is not difficult. Data dependencies are

predictable, but the Inter-task Interactions may be complex. Maintenance of

this type of software can frequently be very difficult as even small changes to

a single task may Involve changes to most other tasks In order to accommodate

execution-time and data dependency constraints.

EXPUCIT CONTROL

A significant increase in flexibility is achieved by designing an explicit control

strategy that schedules tasks as they must execute rather than uniformly, as

above. In this approach, uneven intervals are allowed. Fig. 5 depicts such an

activation schedule.

Task Activation Schedule

Interval 1 2 3 4 5 6 ... N

Task 1 .

Task 2

Task 3

Task 4

Task 5

Task 6

expl-rpt

Figure 5. Task Activation Schedule for Explicit Control

Normally, this type of control strategy increases throughput at the expense of

Increased design effort required to manage the task timing and

Interrelationships, data dependencies, error detection and recovery, and task

initialization and termination. It tends to reduce task overhead somewhat, as

each task assumes that it Is ready to run when invoked. Maintenance of this

type of software can be very.diffl•gJ.
14

pj

ATLANTIS RESEARCH GROUP

ASYNCHRONOUS CONTROL

Asynchronous control Involves scheduling tasks to be activated as required

during program execution using explicit calls to an operating system. In this
manner, tasks schedule themselves. Normally, this scheduling process involves

assignment of priorities to each task and some form of priority arbitration. As

a result, task overhead is high for this control strategy. Tasks must maintain

their own control of time and usually spend much longer in such overhead tasks

as regaining synchronization, scheduling the next event and checking error

conditions. If precise timing is Important, it is usually up to the task itself to

achieve It.

,- Awaken asyn-rpt

Regain
Time
Snvch

C
o Do Task
- Work

o° c
* .4

x" Computel
NwTerminate)

S....... '"Sleep

Figure 6. Schematic Representation of Asynchronous Control

15

ATLANTIS RESEARCH GROUP

Figure 6 depicts the asynchronous control strategy. Each task appears to
operate Independently of all other tasks. The task terminates voluntarily by
either a "Sleep" or a "Termlnate" call to the operating system. The relationship
of one task to another must be controlled explicitly and frequently Involves
flags and semaphores.

Software that is asynchronously controlled Is frequently described as
"unpredictable", as the processor time required for execution frequently depends
on the data encountered. Nevertheless, such systems can be quite efficient in
their use of computer resources, and "background" tasks can be scheduled to
take advantage of resources that would be wasted otherwise. Most multi-
processor systems are controlled asynchronously.

2.4 GENERIC CATEGORIES

During the course of this effort, it became clear that it would be necessary to
develop an automated tool to help Implement Software BIT within the
anticipated SDI BM environment. As a result, Atlantis analyzed the types,
categories and examples of Software BIT Identified to date and defined four
generic categories of BIT. These categories are:

"* event counters

"* rate samplers

"* range checkers, and

"* data samplers.

Event counters are triggered by specific events and report the occurrence of
those events; e.g., a counter used to Indicate receipt of a garbled message or
the occurrence of a "warm" boot. Rate samplers are used to determine the rate
at which events occur by sampling event counters over known intervals (which
may be regular or asynchronous depending on the application) to determine the

16

MENEM

ATLANTIS RESEARCH GROUP

average frequency of occurrence of events; e.g., the rate at which garbled
messages are received (which might be an indication of channel deterioration).

Both classes of BIT can be significant with and without design range limits.

Range checkers are used to compare local variables with anticipated

performance design limits and can be Implemented either as maximum (minimum)
value or Interval checkers; e.g., the temperature gauge on an Internal
combustion engine Is normally marked to indicate the range of acceptable

performance. The BIT Indication is that the variable Is out-of-tolerance. Data

samplers provide a means of recording current values of local variables to
provide post-mortem clues to performance and are generally not associated with

hard design limits. Data samplers are the least specific type of BIT.

Each of these classes Is discussed In more detail In subsequent sections.

2.4.1 Event Counters

Event counters detect and report the occurrence of rare events and/or

Infrequently executed portions of the software. Specific examples are restart

and retry counters, process activation counters, watchdog timer elapsed, and

error handler invocations.

Event counters instrument portions of the software that have been designed to
respond to abnormal environmental or operational situations. In many single

computer systems, they would be reported to a maintenance log (possibly a
hard-copy terminal) to be available to the service technician/ system engineer

as data to be used In evaluating performance or trouble shooting system faults.
Within the SDI environment, It will obviously be necessary to report the

occurrence of the event to some external agent (implying some form of message

generation).

2.4.2 Rate Samplers

More often than not, the true indication of a potential system problem is

related to the frequency of occurrence of events rather than to the events

17

ATLANTIS RESEARCH GROUP

themselves. For example, most communications systems are designed to tolerate
noisy communications channels. The channel is characterized in terms of a bit-
error-rate, and protocols are designed which compensate for data loss at or
near the maximum channel bit-error-rate. (A relatively error-free channel with

a bit-error-rate of 10-7 will average several faults per hour if tens of 100-
character messages are transmitted each minute.) As a result, the total number
of errors is not a good indication of performance. What is required is to

determine whether the error-rate exceeds allowable tolerances.

Rate samplers accomplish this task, but require a more elaborate implementation

than any of the other forms of generic Software BIT. By periodically sampling
event counters, rates are determined and compared to design thresholds.
Implementing this within a multi-tasking environment involves scheduling a
sampling task for execution on a periodic basis. The sampling task can
determine from the system clock the amount of time which has elapsed between

successive invocations and thus determine the event rate.

2.4.3 Range Checkers

Range checkers compare an identified variable with a predetermined range of

acceptable values to determine whether an alarm should be set. Range checks
can be applied both to computer-specific variables, such as queue and stack
lengths, and to application-specific variables, such as engine operating

temperature. 2 We anticipate that range checkers will be the most common form

of BIT.

Although it is frequently possible to select useful variables to subject to range
checking, it is often difficult to set an appropriate range. Therefore, it is
desireable to provide a mechanism for adapting the thresholds during test and

non-crisis operation in order to gain operational experience. This leads to the

2 Engine operating temperature is clearly hardware BIT rather than
Software BIT oriented. Nevertheless, we have found it a more useful example
than any software concept because there is no need to explain its significance.
Further, most people recognize it is a two-sided test, since engines that operate
"too cool" are often just as "out-of-tolerance" as engines that run "too hot".

18

"I')

ATLANTIS RESEARCH GROUP

concept of training the algorithm, discussed in more detail In section 3.2. By
permitting a training mode, it is possible to adjust the threshold tolerance to

provide meaningful, experience-based operating limits.

2.4.4 Data Samplers

In order to accommodate the wide range of potential candidates for application-

specific Software BIT, it is necessary to define a special purpose tool which
permits capturing specific Information on particular variables. No threshold

testing is involved. Rather, the data value is reported each time the BIT is

executed.

Note that no training thresholds will be used for this type of BIT. However, it

might be advantageous to use the "New Threshold Set" message as the

mechanism for reporting data values. Data samplers are not a substitute for

software instrumentation.

19

ATLANTIS RESEARCH GROUP

3. Implementation Considerations

3.1 PARTITIONING THE RESPONSE TO A TRIGGER

Three different strategies exist for reporting BIT alarms:

"* Direct action to change the control flow of the program in

response to the out-of-tolerance alarm. (An example of this is

the Ada concept of EXCEPTION and EXCEPTION HANDLING.)

"* Direct action to Initiate alarm notification without significant
Interruption to the control flow of the program. (Execute one

path of an IF-THEN construct to 'send a message" to the
maintenance function but resume program execution at the next

operation after the BIT test instruction.)

"* Indirect action to post an (or one of several) out-of-tolerance

condition warning for subsequent processing by a BIT response

task which must search through the BIT alarms capable of
posting the warning to determine which alarms are active. (The

out-of-tolerance condition acts as an alarm annunciator for the

maintenance task causing it to undertake a complete review of

system status.)

Each is worth elaboration within the context of real-time systems.

Direct action to change the control flow of the program is appropriate when

either the alarm is sufficiently serious or the penalty for aborting the current
process is low enough. Examples include: a ground proximity detector which

might cause a terrain-following radar system to stop processing detailed radar

returns and issue a "pull-up" directive to the flight control processor; stack-

overflow detection; or, a telephone switch center which might simply disconnect

the call in process in order to initiate maintenance which puts the node (or

trunk set) out-of-service. Direct action to change the control flow of the
program normally creates a technical roadblock to clearing the problem and

20

ATLANTIS RESEARCH GROUP

resuming execution where the program aborted. (Note: the latter problem Is
often cited as a criticism of the Ada EXCEPTION concept, since the
EXCEPTION HANDLER cannot resume program execution within the block In
which the EXCEPTION was RAISED. This is less a valid criticism of Ada than
it Is an indictment of sloppy engineering practice; however, the problem does
limit the use of EXCEPTIONS more than the early Ada advocates and teachers

thought.)

Direct action to initiate an alarm notification without significant control flow

interference is a less drastic step than the first. It is appropriate whenever
the potential for immediate damage is not high enough to warrant immediate
intervention and the current process can continue. Since the notification
message can be tailored (and/or readdressed) depending on the actual BIT
indication, this is a very flexible form of response. It also represents a

relatively high overhead response.

Indirect action is the lowest overhead response. In general, it relies on

another process to determine the severity of the problem and to initiate a
response. Action continues after the BIT alarm is raised. Thus, the technique

can be applied in software for which very predictable execution scenarios are
required. In general, it implies that the "out-of-tolerance" condition can also
be detected by another process so that at least some of the BIT must be

accessible in either global or shared memory.

Note that the distinction between the last two categories is necessarily vague.
The concept is one of taking explicit "corrective action" versus raising a "hey
look at me" type flag. Neither is as direct as the first category (which
happens to be the one defined in Ada and mostly ignored/overridden in
practice).

The notion of local versus global storage is important, but it is not yet well

developed. One of the serious flaws in the original concept is the requirement
to share data among processes. This conflicts with the software engineering
principal of "information hiding" and can cause trouble. By using direct action

without intervention In the control flow, the BIT can avoid sharing detailed

21

ATLANTIS RESEARCH GROUP_

, inforaton. Thus, it Is an Important refinement of the concept resulting from
our Phase I Investigation.

3.2 TRAINING THE SYSTEM

One of the concepts that was described briefly In the proposal could be called
"training the system". It Involved using development and Integration testing as
an opportunity for determining what alarm thresholds should be built Into the
operational software. Moreover, it Is possible to use controlled operational
testing and exercises (when the user knows that he Is not In "crisis operations
mode") to help determine acceptable limits, which can then be set Into the
software for use during "crisis operations modeu. (Recall that the principle is

to detect when the software Is operating In a "new" environment so as to
preclude operation under circumstances In which there is neither existing
operational experience nor design rationale for expecting correct performance
from the system.) Trainability Is a direct result of maintaining simplicity In
BIT design.

An example will Illustrate the point. Suppose that the Indicator of Interest Is
one which should remain below a certain threshold. The following pseudo-code
representation of the trainability algorithm Is appropriate:

IF (Indicator > AlarmThreshold) THEN {
IF Train_Mode THEN [Reset AlarmThreshold to Indicator;

Post NewThresholdSetIndicator]
ELSE [Process Alarm Indicator] I

This Is a self-calibrating threshold whenever the program Is in TrainMode.
Moreover, the software can be balanced to ensure approximately equal path
execution whenever an alarm exists. It should be included In the operational
software, not deleted prior to delivery. Thus, it Is possible to use it in real-
world user exercises.

Note that it Is necessary to notify someone If a threshold is trained, especially
If particular thresholds are stored In "local memory" so as to "hide the

22

ATLANTIS RESEARCH GROUP____

Information . In that case, a special storage task may also be required In order
to "permanently save" the new threshold. Our preference Is to incorporate this
date save function into the normal, orderly shutdown of the task.

3.3 SDI IMPLEMENTATION CONSIDERATIONS

3.3.1 Fault Tolerance

Although few relevent decisions have been made about the SDI Implementation,
it Is certain that fault toleran will be an Important design requirement.
Exactly what form that will take is not clear and may not be known for some
time. However, It is clear that fault-tolerant systems invoke some software
design features not always present in other types of real-time systems. These
features are Important considerations In designing Software BIT. Two such

features are:

"* Automatic Retry3

"* Automatic Restart

Both design features attempt to compensate for the effect of errors detected
during system operation. (Whenever the action Is pre-programmed, it is termed
"automatic". We assume that the timeliness involved in SDI applications will

lead to substantially automatic system responses.) The normal interpretation of
retry is that the system makes a second attempt at an operation which failed
and continues if the operation Is successful. (This is particularly useful In
correcting "transient" faults.) Restart involves reinitializing some part (possibly
all) of the software to a known good4 state. (The terms "cold", "warm" and
"hot" restart are frequently applied to distinguish among attempts to preserve
none, some, or all of the tasks In process at the time of the restart.)

3 For terminology, see Ref 6.

4 We distinguish between "good" and "error-free", since it is nearly
Impossible to assert that the system is error-free unless a cold restart is
attempted.

23

S..it

ATLANTIS RESEARCH GROUP

Event counters that monitor the number of retry and restart actions for each

separately Identified major task are excellent candidates for Software BIT.

Restart counters can be incorporated into the task initiation process, if either

warm or cold restarts are used, without severe execution penalty. Retry

counters must be included in the fault response logic and may impose a

measurable execution penalty. In addition, Atlantis anticipates that rate

Information may be useful for many types of tasks. (Rate measurements are

obtained by sampling the event counters at known intervals and may be
implemented as background tasks. Wallace, Ref. 7, reports using short-term

error counts and thresholds to detect failures and long-term counts to help

detect erratic, transient behavior.)

3.3.2 Continuous Operations

Designing systems for continuous operation over extended periods imposes

additional design requirements. In particular, it requires that the system be

capable of adapting to changes in both hardware and software. Hardware

components will be added, subtracted, repaired and redesigned during the useful

life of the system. It would seem naive to expect that the software will not

change also.

Two features of continuous operations have significant implications for Software

BIT. First, any implementation of a continuously operating system contains

design features that will be candidates for Software BIT. For example, the

program loaders, hardware configuration data loaders, and configuration data

managers should all include event counters which are BIT candidates.

Additional candidates will depend upon both the design and the degree to which

individual candidates are monitored directly by the system as trouble indicators.

The second significant implication Is that any realization of Software BIT must

reflect continuous operation. In particular, the test points, limits and responses

must be linked through a dynamic Software BIT manager that is capable of:

allocating new test points, eliminating old test points and results from the

database, changing severity codes and responses, and monitoring its own

24

q

ATLANTIS RESEARCH GROUP

operations and status. These conclusions follow directly from the implicit

requirement for evolution within any continuously operating system.

3.4 IMPLEMENTATION

Implementation of Software BIT involves a number of different software

components:

"* instrumentation software -- additions to the operational

software that perform the test

"* reporting software -- additions to the operational software to

report the test software external to the module being tested

"* response software -- additions to the system software which

respond to the BIT Indication and re-schedule or re-allocate
resources and/or announce events to human operators.

Instrumentation software Is described in section 3.4.1 below. For the general

case, reporting the occurrence of a BIT event requires interaction with the on-
line operating system and Is described in section 3.4.2. Response software Is
beyond the scope of this report; moreover, it Is extremely application dependent
and may vary considerably across various SDI applications.

Selection of the variables to instrument, assignment of thresholds and severity
indicators, and interpretation of Interim results Is very labor-intensive and will

require involvement by the software development professional at the module

level. Implementation of the reporting mechanism is not module dependent;
rather, it is project dependent. As such, we believe that it will most likely
involve project tool-builders and systems engineers. Moreover, it is influenced

more by the architecture of the system and the selection of the operating
system than by the specific application. Therefore, Atlantis believes that an
automated tool may represent the best project solution, both from the technical
implementation perspective and from the project standard perspective. These

topics are described in sections 3.4.3 and 3.4.4, respectively.

25

r• •~~~.r r 0•• .•••

ATLANTIS RESEARCH GROUP

3.4.1 Instrumenting the Software

Adding any of the four generic types of Software BIT Involves selecting the
variable or path to be monitored and setting specific thresholds (i.e., the range
limits for type 3 BIT and sampling period for type 2 BIT). This Is a very
mechanical process that can easily be automated using compiler directives (e.g.,
the Pragma concept In Ada) in almost any language.

For example, Implementing an event counter Is a matter of inserting
Instructions which "Increment a counter and report the event" Into the
Instruction stream of the appropriate path. For strongly typed languages, the
event counter must be "declared" within the appropriate block; it may be
necessary to constrain the variable to be "static" In order to ensure relative
permanence within the task environment.

Reporting the occurrence of the event Is a matter of formatting an appropriate
message to the maintenance manager. There will be different Implementations
of the reporting mechanism depending on the control-flow interaction selected
for the project. (See section 3.1.) Nevertheless, the process is one of
reporting the time and type of event together with an indication of where it
occurred.

3.4.2 Interacting with the Operating System

The Software BIT Implementation must Interact with the executing real-time
operating system In at least three ways:

* Identification of tasks and processes

* Message routing and passing

* Implementation of rate sampling.

26

ATLANTIS RESEARCH GROUP

In addition, it appears highly desireable that the implementation Interact with a

dynamic database of values and thresholds which may also involve the operating
system.

During the Initialization phase, it will be necessary for each BIT implementation
to obtain the project-unique identifier for the task (or process) it is
monitoring. Although it is conceivable that processor and task identification
might be assigned during software development, it seems much more likely that
they will be assigned dynamically during system operation and that it will be
necessary to obtain them at run-time from the operating system. These

Identifiers are used in conjunction with the reporting software to identify the

source of BIT alarm and threshold adjustments.

Once a BIT indicator is triggered, it must be reported. This requires sending a
message from the operational task to the maintenance manager informing It
about the event. Different strategies can be used for formatting, sending and
receipting the message; Atlantis evaluated a number of them during the Phase I

effort. Our preference is for a simple process modelled after the old control
log concept in which a teletype at the operator's console was used to record
significant events for review by the operator on an as-required basis. In this

approach, a logical message file is maintained by the operating system and
transferred to the maintenance manager as circumstances warrant. (The system
design can provide for periodic or event-driven message transfer. A
communications task can be added to each processor if the operating system
does not provide this feature automatically.) Messages are time-stamped when
recorded in the logical message file. This time-stamp is used by the
maintenance manager to sequence events for analysis and permits maximum

flexibility in message routing. We anticipate that BIT messages will be assigned
a service precedence and transmitted on a resource-availability basis. (Table 3-

1 depicts the categories and likely contents of Software BIT messages. Note

that the distinction between internal and external distribution refers to whether
or not the BIT message leaves the local processor to interact with the on-line

database.)

27

ATLANTIS RESEARCH GROUP

Table 3-1. BIT Message Categories

Category BIT Type Distribution Message Content

Event All External Task ID, Event-time,
BIT TD, Eventtype,
Remark

Threshold 3,4 External Task ID, Event time,
BIT _D, New thre-shold
value

Data 3 External TaskID, BITID
Request

BIT 2 Internal BIT ID, Additional
Coordination implementation details(TBD)

Implementing the rate sampler also involves the operating system as an
independent sampling task is required. In the general application, a sampling
task will be scheduled to sample each event counter at the appropriate rate on
a non-interference basis. However, we anticipate that most applications will
prefer to have a single sampling task implemented on each processor rather
than one sampler task per event. Neither approach is conceptually difficult, but
the single-task-per-processor approach may Involve a more elaborate sampling
task which reduces the load on the operating system.

3.4.3 The Generic Tool

In the context of the distributed, fault-tolerant, continuously operating
architecture required to implement the battle management task in SDIO, it is
evident that implementation of Software BIT will require tools in at least three
different categories:

9 Preprocessor Tools

* On-line (possibly distributed) BIT Data Manager

28

!~~~~~ ~~~~~~~~~ r rr!'~ ' ! • p • ' •P ' 'l ' r ""' •

ATLANTIS RESEARCH GROUP

9 On-line BIT Annunciator

Each category is described briefly below.

Preprocessor tools operate in the development host computer (for Ada this

would be the APSE) either as a preprocessor for the compiler or as an adjunct

to it in order to insert the necessary process-unique identification and routing
information Into the source code. The programmer is expected to realize that a
"OType 3 BIT is required to monitor local variable XXXX" at a particular point In

the program, and the preprocessor must implement that concept. A conceptual

representation of this process is provided in Fig. 7.

NOTE: This is largely a configuration management and data

communications routing task. The issue here is to ensure that the

overall BIT report is never confused about where an error or

indication comes from, what it means, etc. It is too much to expect

that the individual programmer should be tasked with resolving the

BIT implementation Issues.

The on-line data manager receives BIT reports from the operating tasks, updates

the BIT database, and prepares (and possibly posts operational status reports.
This category is relatively straightforward but will be project unique (i.e., the

SDI Battle Manager may have a different on-line database than the tracking and

pointing systems, etc.).

The on-line annunciator processes the information from the software BIT to

provide inputs to the Battle Manager. Atlantis can offer little insight into

what this portion will be for the SDI application. In a simulation test-bed, we

envision that a console display capable of presenting status information to the

facility manager might be appropriate. It is clear that the form and format will

vary depending upon whether or not a human operator will be asked to

interpret the Information.

29

I

ATLANTIS RESEARCH GROUP

%instnanmt(Type = 3, Vra u NoTergetsEngaged DNTgts)
HITIrwh w 9.0, LowThresh s Hi,
Lwnm Yes, Pdority O)

Thrsh REALt (>i Thrsh0HETask

Ssw�uaI Te teLea roe THR I

ReprL~wj(IdumThrsh >V Taskh HE

igure 7. Thematic Representation of Pro-processor Tool

This is the province of the evolving technology: the decision aids, artificial

Intelligence, etc. It Is real and certainly Important to the overall application of
Software BIT to SDIO applications, but it may be premature to consider it now.

3.4.4 Making Software BIT Happen

During the course of our research, Atlantis personnel discussed our concept
with numerous software and system professionals. Most were quick to point out
that they had some experience with attempting to monitor system performance
using tests similar to Softare BIT, that they thought it had merit, and that it
would be difficult or Impossible to convince people to use it in the real world.
We were not surprised at what we view as a reserved (as opposed to
enthusiastic) response. Serious objections can be raised in two areas:

e Development time (and expense)

* Resource consumption.

30

ATLANTIS RESEARCH GROUP

There can be no question that implementing Software BIT requires the
involvement of the software engineer during the design and implementation
phases. However, we believe that use of a tool (as described in section 3.4.3)

will minimize the development time required so that project management

personnel will be comfortable with the effort. The remaining technical

challenges, described In Chapter 4, can be quantified, demonstrated and

evaluated in sufficient time to meet SDI requirements.

Resource consumption is another issue. Software BIT will consume both system

memory and processor throughput resources. Additionally, it will use

communications assets that might otherwise be allocated to different taskings.

Therefore, it is necessary to address the resource issue directly.

Our Phase I proposal included a proposed attempt to identify a potential

application within the SDI laboratory environment that could be a target for an

experiment demonstrating both the feasibility and benefit associated with
Software BIT. Unfortunately, we were unable to find such a potential host
until very late in Phase I -- too late to incorporate an experiment design in

the material reported herein. (Our effort was, therefore, applied to other

aspects of the research.) The Advanced Research Center (ARC) being
constructed by the Army's Strategic Defense Command at contractor facilities in
the Huntsville area appears to be a very promising candidate. Nevertheless, we

feel that a successful laboratory demonstration is crucial to provide the
counterbalancing benefits needed to lustify the resource utilization of Software

3.5 LANGUAGE CONSIDERATIONS

Although the generic concept ot software BIT does not require any particular

computer language, it Is reasonable to expect that implementation of the

concept may be facilitated by the choice of one or more particular languages.

Within the context of SDI, the Ada programming language is clearly the most

interesting.

31

ATLANTIS RESEARCH GROUP

During the Phase I effort, Atlantis investigated two aspects of the Ada language

that appeared to offer significant potential within the BIT context: sub-range
checking and exception handling. Both are design features of the language that
improve the software engineering aspects of Ada code. Our preliminary results

are reported in the Appendix and are summarized as follows.

Neither design feature appears to be appropriate for routine application to
Software BIT because they tend to interfere with the control flow of the
program. As described in section 3.1 above, it does not appear desireable to

use a direct Intervention strategy except In rare circumstances. Therefore, we
conclude that these particular Ada features do not facilitate implementing

Software BIT.

Ada remains a strong candidate for application of the concept. It's strong-
typing and block structured nature facilitate the implementation of a pre-

processor capable of automating the software instrumentation process. Ada's
tasking structure is a natural for implementation of both the rate sampling and

communications processing tasks that must reside on each processing node.

Moreover, the Inter-task communications features of Ada may enhance
implementation. However, the actual implementation details of particular

compilers will significantly influence the design of the Software BIT tools, and
it will be necessary to evaluate individual compiler-operating system pairs to

determine specific implementation tradeoffs.

32

ATLANTIS RESEARCH GROUP

4. Conclusions and Recommendations

4.1 PHASE I CONCLUSIONS

Software built-in-test (BIT) is a design technique for collecting information
from operational software that will assist in identifying differences between the
real Operating Environment and either the Design or Test Environments. The
BIT senses and indicates where the software is operating in "new" or
"overloaded" environmental conditions and may, therefore, be more likely to fail.

(This anomalous situation may be the result of either hardware failure or
software design error.) The technical challenge is to incorporate the large
number of relatively simple BIT tests into the fault-tolerant and continuously

operating environment likely to characterize a solution to the battle
management portion of the SDI mission. The management challenge is to
provide these technical assists in such a way that they can be implemented in

operational software with a minimal increase in software development time; it is

then reasonable to expect that BIT will not shift from a hard requirement to a
nice-to-have feature as schedule pressures potentially impact development. Our

approach overcomes the management problem by providing a standard set of

tools for use within the software development environment which will implement

BIT with a minimum amount of programmer action.

Four general types of Software BIT appear to provide all of the characteristics
needed for both computer-specific and application-specific BIT as defined in our

original proposal. These four categories, distilled from numerous candidates,
are: event counters, rate samplers, range checkers, and data samplers. They are
implemented as pre-processor instructions so that the programmer need only
identify the variable(s) to be monitored, type of BIT, limits and priorities at the

instrumentation location. The tool then produces the necessary source-code
(which Implements the BIT, interacts with the BIT database, prepares and

dispatches messages, and resumes program execution).

Within the continuously operating, fault-tolerant environment postulated for the
SDI battle management application, Software BIT takes the form of three major

33

ATLANTIS RESEARCH GROUP

components which Interact by passing messages through the battle management

communications channels. These components are:

"* Instrumented software

"* Reporting software

"* Response software.

Instrumented software is built by designers who fill in templates to provide the

parameters which instantiate the generic BIT modules. Reporting software
interacts with both the generic modules and the operating system to

communicate BIT Indications to the on-line maintenance manager. Reporting
software will be implemented by project tool builders who provide the necessary
" Tutilities" for use by the instrumented software. Ukewise, the response

software will be developed on a project basis and may be unique to each major

system segment.

It is possible to avoid one of the major pitfalls of automatic test software (i.e.,
incorrectly set thresholds) using a Ntraining" algorithm during testing and non-
crisis operation. In this approach, design threshold values are updated based on
system experience. As long as performance remains acceptable, the thresholds
are adjusted to reduce false alarms, and the BIT becomes more sensitive to

actual environmental changes.

4.2 RECOMMENDATIONS

We offer the following recommendations for additional effort based on the

result of our Phase I study:

* Continue the feasibility investigation by designing and
prototyping a pre-processor version of the tool.

34

ATLANTIS RESEARCH GROUP

* Design an experiment for an SDI laboratory demonstration that
can demonstrate (or disprove) the utility of the BIT concept.
The ARC laboratory In Huntsville represents an excellent

candidate based on our limited information received late in the

Phase I contract.

* Investigate the implementation trade-offs involved in applying
the Software BIT concept to Ada software using at least one
second generation Ada compiler.

We believe that a Phase II SBIR effort is an appropriate vehicle for

accomplishing these recommendations.

Successful completion of this research will provide a family of tools for
assisting the battle manager in anticipating situations where system overload
caused by design inconsistency is about to impact performance. This approach
should provide a method for precluding or alleviating significant operational
impact from a software fault that might otherwise cause anomalous system

performance.

35

ATLANTIS RESEARCH GROUP

Appendix. Using the Exception Handling Features of Ada for Software BIT

Ada contains a construct known as an Exception. The LRM refers to them as

"facilities for dealing with errors or other exceptional situations that arise

during program execution*. Exceptions provide a method for changing the

normal control flow of the program to handle errors under program control.

There are five pre-defined exceptions within Ada, and the user can define

additional exceptions. The pre-defined exception constrainterror is relevant to

these discussions.

Imolicit Exceptions. Ada is a strongly typed language which permits range

restrictions. Therefore, It Is possible to define a variable so that the range

feature effectively implements a threshold test; e.g.,

subtype Stacksize Is INTEGER range min accept .. maxaccept;

defines an Integer variable Stack-size constrained to the closed Interval

[minaccept, max accept]. Any attempt to assign a value to the variable

Stacksize outside that limit "ralses" the exception constrainterror.

This approach provides one method of implementing Software BIT. It is both

undesirable (in the sense of disturbing the control flow -- see below) and

impractical In that it does not provide a useful clue as to the problem. Once

constrainterror Is raised, the program begins its exception handling process.

It Is unlikely that the exception handler will recognize that It has been invoked

by a properly implemented Software BIT function rather than as a result of an

error caused by the program. Finally, such an Implementation is extremely

vulnerable to use of Pragma SUPPRESS which can eliminate range checking in

order to enhance execution speed.

Exo2licIt Exceptions. It Is also possible to declare and handle new types of

exceptions. Consider the example presented by the following pseudo-code

fragment:

36

ATLANTIS RESEARCH GROUP

declare
Stack-overflow, Stack underflow: exception; -- Example of stack

begin -- handling exceptions

If Stack size > max accept then
raise Stack overflow;

elsif Stack size 7 min accept then
raise Stackunderflow;

end if;

exception
when Stack underflow Stack overflow =>

'- hanale the stack exceitions
when others => raise;

end;

This example illustrates several points. First, the explicitly defined exceptions

Stackoverflow and Stackunderflow act much the same as constrainterror

except that the user must explicitly program the conditions under which an
exception Is raised. Second, the exception handler can process the exception
Independently or as a related set without interfering with other exceptions. (As

written, the when others clause provides a mechanism for passing the exception
information about other exceptions outside this block. Notice that it is not

necessary to identify the type of exception.) Third, because the stack

exceptions are processed within the block, they are cleared upon exit (unless

they are passed on by raising them again) and will not influence control flow in

other portions of the program. Finally, the testing can be moved to another
program construct (e.g., Task or Function) provided that the naming and scope

conventions are handled properly.

Using explicit exceptions as a means of implementing Software BIT is one

option that warrants further Investigation. Although the implied overhead and

control Interruption penalties may be severe using this approach, they can be

controlled using appropriate design techniques. It is not clear whether the

disadvantages of this type of implementation outweigh potential benefits.

Control-flow Interruption. Exceptions Interfere with the normal flow of

program execution. If an exception is raised within a block, program control is

passed to the exception handler for that block. If no exception handler exists,

control flow passes to the exception handler at the next higher level, bypassing

37

ATLANTIS RESEARCH GROUP_

* more and more of the normal program flow until: an exception handler is
encountered, the task "is completed" by the exception and a Tasking error
exception may be raised, or main program execution Is abandoned (which results
in an "undefined" state of the system).5

The Interruption of normal program control-flow in conjunction with exception
handling Is inconsistent with the philosophy of Software BIT under most
circumstances. (Recall that Software BIT is designed to gather information
about program performance without interfering with normal program execution
on the assumption that the BIT is only intended to gather indirect information.
If direct tests of performance are available, Atlantis recommends handling them
as part of the design process.) As a result, careful attention must be devoted
to scope, blocking, and recovery in order to use exceptions as Software BIT.

5 Although this discussion of exception propagation Is technically correct,
it is not complete. The Interested reader Is encouraged to consult either
Chapter 11 of the LRM or a suitable text on Ada (e.g., Ref. 5).

38

ATLANTIS RESEARCH GROUP

References

1. Baxter, A. P. et al, "System 75: Communications and Control Architecture",

AT&T Technical Journal, Vol. 64, No. 1, January 1985, pp. 153-173.

2. Sager, G. R. et al, "System 75: The Oryx/Pecos Operating System", ibid,

pp. 251-267.

3. Lu, K. S. et al, "System 75: Maintenance Architecture", Ibid, pp. 229-249.

4. ANSI/MIL-STD-1815A, "Ada Programming Language", 22 Jan 83.

5. Barnes, J.G.P., Proarammin9 in Ada, Addison-Wesley (International Series),

London, 1982.

6. Siewiorek, Daniel P., "Architecture of Fault-Tolerant Computers", IEEE

omute, Aug 1984, pp 9-18.

7. Wallace, John J. and Walter W. Barnes, "Designing for Ultrahigh

Availability: The Unix RTR Operating System", IEEE Computer, Aug 1984,

pp 31-39.

39

U,

ATLANTIS RESEARCH GROUP

Initial Distribution

* Number of Copies

Scientific Officer 3
Office of Naval Research
Department of the Navy
800 N. Quincy St.
Arlington, VA 22217-5000

DCAS - Boston 1
495 Summer St.
Boston, MA 02210-2184

Director 1
Naval Research Laboratory
Attn: Code 2627
Washington, D.C. 20375

Defense Technical Information Center 12
Bldg. 5, Cameron Station
Alexandria, VA 22314

I.

40

* V

